接上一篇:设计大师Don Norman谈无需设计师的设计(上)
为什么测试很重要却又不完善?
数据驱动型设计正好比一种知名的优化算法——“爬山(hill-climbing)”法。设想你身在一座不熟悉的山丘上,一片漆黑伸手不见五指。如果你看不见,要如何爬到山顶呢?你可以测试自己周围的地形,哪个方向是最陡且往上的,就向哪个方向迈一步。重复探寻,直到你周围任一方向都往下行为止。 但如果这片地区有很多山丘怎么办呢?如何能知道你是否处于整片山丘的最高处呢?答案是:你不能知道。此即“local maximum(局部最大值)”问题:你无法判定你是在最高的山丘顶上(即全局最大值,global maximum)上,还是在一个小山丘顶上。 在数学空间中,计算机可尝试从空间中多个不同的部分同时施行“爬山”算法,并选取所有尝试结果中的最大值,从而避免“局部最大值”问题。这种做法仍然无法保证能取到真正的最大值,但能避免被局限在单一的局部最大值上。这种策略对设计师而言鲜能凑效。确定一个起点就已经很不容易了,更不用说确定多个不同的起点。如此一来,通过测试来进行改进的设计只可能达到一个局部上限。测试永远不可能告诉我们,是否存在好得多的方案(也许另一个山丘要高得多)。 于是就需要有创意的人来参与。当这个人重新构造问题,认识到之前探索的局限性,突破就会出现。设计和发明需要创意的一面。渐进式的设计无法做到这一点。
伟大创新的障碍 激动人心的创新所具备的一些根本特征,使创新本身不适合通过测试来进行决断。人们对新颖设计有抵触情绪,采取的态度会趋于保守。做事情的新技术、新方法往 往要历经数十甚至上百年才会被接受。与此不同的是,各种基于测试的设计方式都假设,做出一个改动之后,能够立刻测试、得到反馈,并立刻决定改动后是否比改动前更好。 我们没有办法判别激进的新想法最终是否能成功。我们还需要伟大的领头者和勇气。历史告诉我们,有许多人面对一次又一次的拒绝和抵触,坚持了很长时间,其想 法才终获接受。这些成功者经常指出,在产品获得成功后,人们就无法想象以前没有这个产品的时候是怎么过的了。历史也告诉我们,有许多人坚持过,最终也未获得成功。对激进的新想法持怀疑态度并不为过。 一个初成的想法不被接受,因素很多:可能是因为技术还不成熟,可能是因为还有很多东西有待优化,可能是因为受众群体还没有做好接受它的准备,也可能是因为这是个糟糕的想法。判定其中的主导因素是很困难的——是在确立想法很久之后,才会得到的后见之明。 一个激动人心的想法,从想法形成并初步实现,到最终认定其在市场中的成功或失败,历时长久。 有些人想以证据作为标准,对新发展方向进行定夺,却被这漫长的时间差所击败。 更好的方案即使曾经被提出过 ,也可能会被自动化测试否决掉——这并不是因为它不好,而是因为它等不了数十年的时间来获得认可。只看测试结果的人注定会错过巨大的回报。 当然,有很多合理的商业考虑能够解释,为什么忽略有可能更好的方案是明智的。毕竟,如果受众没有做好接受新想法的准备,这个新想法一开始就是会在市场中失 败。短期看来确实如此。但若要想在未来获得成功,最佳的方案是先发展新想法并将其商业化,投入市场以获取经验,并不断地进行优化,发展客户基础。同时,公司还要做好准备,应对现有方案之不测。既要保持把现有的做好,还要准备随时迎接新的。如果公司没能洞察到新趋势,其竞争对手就会迎头赶上,接手市场。这些 竞争对手往往是被现有公司忽略的小创业团队。之所以被忽略,是因为这些新来者的所作所为还不太为市场所接受,无论如何都不像是老公司现有业务的有力挑战 者。请参见“创新者的困境(The Innovator's Dilemma) ”,以了解这种公司的运营困境。 用于屏幕驱动(screen-driven)型设备和电子游戏的势控(gestural)界面和多点触控界面,正是两个久经蹉跎才成功的创新例子。 它们难道不是杰出的创新吗?当然是。它们难道不杰出吗?当然杰出。但是它们新吗?绝对不新!多点触控设备在研究实验室里等待了近30年,才首次迎来大规模量产的成功产品。20年前我就见过势控界面演示。新想法要花上相当可观的时间,才会在市场上获得成功。过快地把想法商业化,往往以失败(以及大笔的资金损失)而告终。 当年那位给我看模型的Apple设计师同事也未能幸免。他给我看的是一台为小学生设计的便携设备,其外形设计不同于我之前所见的任何东西。那真是绝妙的设计——即便是在我这通常很挑剔的眼里,其设计也完美切合了其用途和受众。可惜的是,最终产品成了Apple公司部门间内讧的牺牲品。尽管产品最终被投放到了市场中,但部门间的不合导致了糟糕的实施、糟糕的产品支持和糟糕的市场推广,破坏了产品的整体性。 公司抵触完全地创新,也有根有据。在不能确定赢利潜力的情况下开发新产品线,代价是很高的。而且现有产品的责任部门也会担心新产品打压了现有产品的销售 (这叫做“同类相食”)。这些担忧一般都是合理的。这种形势也属经典案例,即有益于公司的好事情对现有产品部门来说却是坏事情,因为那意味着现有产品部门 职员得到升迁和奖励的机会不容乐观。如此想来,公司会抵触创新也就不足为奇了。统计数据清楚地表明,尽管极少数创新取得了非凡的成功,但绝大部分创新都失 败了并付出惨重代价。无论公司的新闻稿和年度报告里怎么说,公司都会犹豫甚至抵触创新,这都不足为奇,因为持保守态度是明智的。
展望未来 数据驱动的自动化流程会慢慢侵占如今人类设计师所掌握的地盘。诸如基因算法、知识密集型系统等等这些依靠计算机生成创意的新方法会开始接管设计的创意空间。医疗诊断或工程设计等其他领域也正在发生相同的变化。 我们将面对更多无需设计师的设计,但主要只限于在对既有概念的强化、精化和优化方面。即使到了以后,神经网络、基因算法,抑或其他某种尚未被发现的方法都 能被用来开发新的、有创意的人工系统了,任何新概念也还是须要面对同样的困难,经历漫长的接受周期,人类在心理上的、社会上的和政治上的复杂需求。要 做到这一点,我们需要有创意的设计师、有创意的商业人士和有冒险精神的人来突破极限。会有新想法遭到抵触。许多伟大的创新将以更多巨大的失败为代价。 无需设计师的设计?有些人讨厌人类判断的含糊性和不确定性,讨厌人类不靠谱的过往表现和自相矛盾的论调。这些人会尝试剥离设计中的人为因素,转投数字和数 据和怀抱,只因为数字和数据看起来似乎能提供确定性。还有一些人希望借助创意来得到巨大收获,他们会遵循自己的原则来做。前者会带来持续的小改进,显著提 高生产力并降低成本。后者会面对巨大的失败,并迎接偶然发生的巨大成功——这些巨大成功会改变世界。 |